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SUMMARY

The aim of this paper is to discuss cases involtireggRelative Risk for Breast Cancer.
The Relative Risk is examined in eithawitro orin vivo studies. This research is based
on a sample for women in Greece, among whom a nuofbeariables were studied.
It was found that full-term pregnancy and the menuse are statistically significant
factors influencing the Relative Risk for breast @ancA critical discussion and
extension of the existing theoretical backgrouredadso provided.
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1. Introduction

In principle, Risk Assessment is defined as thelillood of adverse/unwanted
responses to exposure to a restrictive agent. dtusial to know the Cancer
Bioassays ((Zapponni, 2002; Kitsos, 2005a), in otdeanalyze the collected
data, as well as possible. Moreover when an optidedign approach is
adopting the Relative Risk is reduced. The apptioapf statistical analysis to
medical problems goes back Mantel and Haenszel (1959), while for an
extended list of 1100 references concerning CaRa Assessment, see Edler
and Kitsos (2005). The “best” estimation leads mooptimal design (Kitsos,
2005b), with D-optimality being the most applicalile biological studies
(Kitsos,1999) The particular statistical analysis needed forl®&jwally Based
Models has been extensively discussed by Wosniokl.e1998). Research on
Relative Risk for Cancer is based on:
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(i) Previewing of the probability of a person’s ééping cancer, or

(i) To assess the probability of cure, for patgent
In the case of prediction, there are two diffelargs of approach:

1. To identify the parameters affecting the proligbdf malignancy.

2. To estimate the likelihood of cancer appeanmtie first place.

The former is realised through biochemical, genatid clinical studies. The
latter is considered through a statistical methogypl applied to real
populations.

Every parameter promoting tumorigenesis incredsesisk associated with
cancer’s appearance or the probability of an unedrdevelopment (poor
prognosis) when cancer is present (Ratt@l., 1998). These factors can be
environmental, such as radiation and chemicals,endogenous, mainly
associated with the genetic profile of the patient.

In other cases a gene may affect a pathway orla dyat in turn affects or
regulates other biochemical aspects which can @deehormonal profile of the
subject. Whether the presence of that compourttkisduse or the result of the
malignancy is irrelevant. What matters is to uses¢h molecules or their
biochemical results as tools for prediction andeassent, or — more practically
— for medical diagnosis. Many malignanciae still diagnosed when the
metastatic process halseady started, indicating a pg@uognosis.

It has been pointed out that tumour markers (ugyaibteins associated
with a malignancy) might be clinically usable intipats with cancer (Cheung
2000, Amaral-Mendes and Pluygers 1999jukour marker can be detected in
a solid tumour, in circulatingumour cells in peripheral blood, in lymph nodes,
in bone marrover in other body fluids. A tumoumarker may be used to define
a particular disease entity, in whicase it may be used for diagnosis, staging,
or population screening.

Markers may also be used to detect the presencecailt metastatic
disease, to monitor response to treatment, ortectieecurrentisease. Some of
the markers related to breast cancer are widelyitored and the relevant tests
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are routinely performed on patient samples, with fillowing being the most
popular:

1. Estrogen Receptors (ER): Estrogen, one of thwlie sex hormones, often
regulates the growth of breast cancer, and caeftirerbe useful for prognosis.
2. Progesterone Receptors (PR): Helps predictiahefresponse to hormonal
therapy.

3. HER-2: This is a protein and/or gene amplifizatiboth of which contribute
to aggressive growth of cancer, while HER-2 overegpion occurs in
approximately 25 percent of women with breast cance

4. p53: This is a tumour suppressor gene. Normh#yp53 protein, coded for
by thep53 gene, stops cells with DNA damage from multiplyingil the DNA

is repaired naturally or sends the defective a#lb iprogrammed cell death.
When thep53 gene becomes damaged or mutated, the protein lescoon-
functional and loses its checkpoint control, allogvicancerous cells to replicate
more readily.

5. S phaseWhen a cell has duplicated its genetic materidl dimided through
the process of mitosis, it may become inactivet @an start another replicate
cycle, beginning with the "S" or synthesis phasgnduwhich genetic material
duplicates again. A higher than normal proportibrEghase is a measure of
how actively a tumour is proliferating.

The most important risk factor associated with streancer is exposure to
endogenous and exogenous oestrogen throughouttieats life. Many gene
polymorphisms in the metabolism of breast cancerehaeen described as
possible neoplasm etiological factors (Bugano et24108). In such cases, an
accurate estimate of a woman's breast cancersrisksiential for optimal patient
counselling and management.

Estrogens, as activators of cellular proliferatibaye been related to breast
cancer progression. In this paper, we examine pghablem in a case-control
study: the frequencies of genotype polymorphismsevdetermined for genes
involved in catechol estrogen formation, via estrodiosynthesisQYP17)
and/or inactivation@QOMT) (Huang et. al. 1999), and their association \aith
elevated risk for breast cancer was studied in iGneemen.
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Regarding breast cancer risk assessment, sustigptiand its relation to
CYP17, MspAl polymorphism, different opinions hav®een expressed
(Feigelson et al., 2002). Moreover Huang et al.9@9found a positive
association between the breast cancer relative &sk the individual
susceptibility genotypes. The association of thatire risk with the number of
susceptibility genotypes was stronger in women witblonged exposure,
women with higher estrogen levels — implied by yankenarche — and women
with higher body mass index (Kobayashi and Kawakifi§4). The collected
data set for the breast cancer measures: full f@gragnancies, menarche,
menopause, COMT, CYP17, among other variablessesgtéon 3.

In this paper, the logit model is adopted to ediimthe relative risk.
Therefore the second section is devoted to a campatsideration of the
logistic regression

2. ThelLogit Modd and the Relative Risk

Consider a subject with attributes given by theutngectorX=(Xy, X,,..., X, Y.
Then, risk analysis concentrates interest on theanpeter p(x), i.e. the
probability that this subject has a certain chamdstic C, given that the input
vector takes the real vector value x, Kex, and measures the odds ratio or the
Relative Risk RR=p()/(1-p(x)). The logit model has been suggested since the
pioneering paper of Berksqi955). That is, the log odds have been assumed
linear i.e.

log{p(x)/(1-p()} = x'B (2.1)
with B being an appropriate vector of regression parasietand
XTB=BO+le1+....+Bpxp, (Hosmer and Lemeshow, 1989). Then, from (2.1),
considering the cumulative distribution function thfe logistic distribution
function, say Logit(z) =4 1+€), Rao and Toutenburg (1999), we can evaluate
that p&) = Logit*(x"B), see also Kitsos (2006).
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A very similar approach was adopted by Bliss (19Bbhis pioneering
paper on Risk Analysis, where he considered theutative distribution
function of the standard normal distributie(t), say

Normal(z) = fq)(t)dt, and let p(x) = Norma{(x"p).

This method is known as probit analysis, and it b@sn pointed out that,
for values of p = p(x) within [0.2, 0.8], both metts are very close. Various
extensions have been discussed (Aranda-Ordaz, TR8dor, 1988, among
others). In principle a general binary regressiondeb is considered as
Fi(p(x)) = x"p equivalent to p() = F(x'p), for a given continuous cumulative
distribution function F.

If we assume that with the covariatg k= 1,2,...,p are associated n
persons, then the MLE df, sayb, provides linear predictors x, through the
estimated probabilities;, i =1,2,...,p. Then we can evaluate the estimated
expected information matriX(§,b) which, for the design matriXD=(x;)
i=1,2...,p, j=1,2,....n, is equal td(&b)=D'"WD, with W = diag (w),

w; = nmi(1-m), i = 1,2,...,p with being a design measure; see McCullagh and
Nedler (1989) for details. Thanks to Fisher's infiation the variances can be
estimated, and thanks to the Rao-Blackwell theotsmonds for the variances
are considered, and approximated confidence intecan be obtained.

For the log-likelihood ratio statistitog L, the deviance, say Dev, is defined
asDev=2logL, and it can be proved tha])evD)(ﬁ_p. Therefore the
expected value of Dev has to be close to n-p, vehgood fit of the data by the
model occurs (Breslow and Day, 1980).

Alternatively to the MLE, Firth (1993) introduced raodification of the
score function so as to reduce the small sampke dfidMLE. He imposed the
so-called “penalty” term on the typical likelihoddnction; the “penalized
likelihood function” is defined as

=108 1A 2.2)
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wheref is the parameters involved, x is the ddté the design measure. The
log-likelihood of (2.2) is equal to

=1+ i o) 2.3)
and the modified score function U is reduced to
0_ 1 1 . _ _ 6|(§,,8)ij
uP=u+ Etr{l(g,ﬁ) T} with T —{Tij} _{a—ej (2.4)

Now, the regression coefficienfs of the proposed logistic model (2.1)
guantify the relationship of the independent vddalto the dependent variable,
involving the parameter as the Relative RIBR) defined already. A typicaf
test is applied for the null hypothesig: HRR=1 vs. H: RR#1 is identical to a
test of the equality of the two proportions’ havig not having the
characteristic C, i.e. 4P, =P; vs. H: Pi£P;.

We mention that RRexp(8, )0 exp@l ‘can be biased due to population
heterogeneity caused by confounding factors adsaciaith the response, for
the simple logit model and not only for that modeécall (2.1). To decide for
a quadratic term in (2.1), namely logit[P(Y=1)] % m mx + mx?, is quite
different. If the term mis essentially different from zero, the questisrhow
“robust” is the linear model. We shall apply thensideration and we shall not
restrict ourselves to linear model approximation,oacurs in all applications.
Moreover it has been extensively discussed by Her(2008) that when gj),
the link function, is of the form

g(m) =By + By (x —)°. (2.5)

for the parameter vectdr = (B,,p,.11) a 3-point D-optimal design is:

-x 0 X .
$3= , with x = 1.957 or 1.238,
/3 1/3 1

while a 4-point D-optimal design can be also olgdijr-ornius (2008).
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For the Logit model and link function defined byettogit transformation,
the D-optimal design allocates half observations. § = 1/2) at the optimal
design points +1.5434, when the vector of coeffitsgs (0, 1). For the optimal
design approaches in Ca Bioassays, see Kitsos ,(2008a, b). The sequential
designs for the logit model have been also disclbgd-ornius (2008, Chapter
5). The stochastic approximation plays an importare molthe development of
a sequential design, usually related to D-optimal(Kitsos, 1999) in
applications. Fornius (2008a) creates a sequertiaptimal design and
compares it with the D-optimal designs for the tagodel Different c-optimal
designs can be produced with differ@nt (B,,B,) and "direction ray'c. For
B= (1, 1),c=(1,3) and the explanatory variable within [-31BF c-optimal
design is a two point design at -3 and 1.4164, with corresponding weights
equal to 0.1826 and 0.8174 respectively. It wasitedi out that the values of
the input vector (0, 1) are essential to constamcoptimal design, therefore for
the Logit model, the "canonical form" is introducddis is based on the fact
that c-optimality remains invariant when the data undemyca “linear”
transformation . Now we state and prove the foltawT heorem 1.

Theorem 1. The set of the transformations

D—G—(l Oj/f S OR iy
1T B a0 '

forms an affine transformation group, under matniwltiplication, which
preserves the c-optimal information measure.
Proof: Considering another element of the grdupas

1 O
H = (ao alj, a,,a, LR then it can be proved easily that

1 0
HG:(V yJDD’ Voo iUR, with yp =ay+a5,0R, y,=aBlR.
o N

Similarly if KL/ O then it can be proved that (HG) K = H (GKJJ. The unit
transformation H 0 is the identity matrix, the inverse transformat®rll! O
is the inverse matrix of G, and GI = IG =L@]. We introduce the
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transformation of the design space U to W of thenfov = G \HW with G
from the groupl]. Take c-optimality as the optimal design criterfanction®,

then®(M,) = CtMu'lc, with M, =M, (B.§ ) the average per observation
information matrix in U space, and Mw in W spacéei it is easy to see that
c'M c=c M 'c, with ¢, =Gc,GOO.

This theoretical result practically means that van avork as follows:
perform the experiment with the "easiest" scale pasition parameters. To
perform the experiment at the optimal design poagsin c-optimality, prior
knowledge off,,B, is needed. Then transform the results with an elfnem
the group of affine transformations, and we stl/é an optimal design. With
the group of affine transformations the experimegg&n move to a different
"orbit", adopting theGc' "direction ray", when he has evaluated only orieoke
experiments. The discussion was based on the fett the evaluation of
Relative Risk is mainly based on the logit model] ¢éhis discussion is applied
in section 3 below.

Now let us consider the general case, where theothmous response
variable Y denotes whether (Y=1) or not (Y=0) thkamacteristic under
investigation is linked with the k regression vales X=(X;, X, ...., X) via
the logit equation:

w%%+i&&}
1+ eXp{ﬂo + iﬂkxk}

P(Y =1) =

K
This is equivalent to Logit Pr(Y+X)= 3+ B X,
k=1

With this formulation we have the benefit that theative risk (RR) for
individuals having two different se¥ andX of risk variables is
Re P(X)[1-P(X)] _
P(X)[L-P(X")]

eXp{Zl[”i X =X )} (2.8)
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It is essential that the RR of the k regressorsRRuences the RR of the k+1
regressors, RR; as in relation (12) below, due to the following:

Theorerrﬂ< 2. Let the relative risk, as above in (2.8), be
RR, =Y 33,5 =X/ = X,. Then if a variable is added, the relative risk of
the k+1lvariables equals the k-variable relative risk tinles new variable’s
relative risk, i.e.

RR1 = RR M (2.9)
This theoretical result informs the experimenteattihe k input variables
continue to participate with a “total” relative kigkR, either in a k-variable
model or in a (k+1)-variable model.
Proof: Indeed:

R, = exp{gﬁid} . exp{im +ﬂK+15K+1} -

eXp{il[”.d} eXF{ﬁKﬂaKﬂ} =RR, [y,

where the definition of, is obvious. So the relative risk of the incoming
variable is

RR,.
() =%&1, g.e.d.

3. Analyzing collected breast cancer data sets

The study concerns 98 breast cancer patients atd hEalthy controls,
compared considering the age at menarche, ageraipaese, number of full-
term pregnancies and the CYP17, COMT genotypes. fidggpiency of the
CYP17 A1l/Al genotype was compared to A1l/A2 and AZ/Awhile the
frequency of the COMT G/G genotype was compardd/foand A/A.

The logit model was used in order to compare thiepa with the controls.
The final model was chosen with a stepwise regpasdn all cases the best
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model is chosen with log-likelihood, and the goainef fit is examined

(Lemeshow and Hosmer,1982). In Table 1 the Reldisks of the full model

are given. Using stepwise regression the final mede estimated (Table 2),
with two input variables, statistically significafat a significance level of 0.05),
namely full-term pregnancy and menopause.

The X? test was used in order to examine whether eatheofienotypes
CYP17 and COMT are related to Cancer Risk. Only Qddems to be related
to cancer at a significance level of 0.10 (valu€’cf 0.096). Moreover the two
genotypes are related to Ca when the age of mem#&@dbwer than the average
value of 12.5 years and the age of menopause is4&@ years, while CYP17
is not (Kitsos et al., 2007).

Table 1. Relative Risks of the full model

Variable RR  Std. Error Z p-value
Full term preg. 1.45 0.17 3.09 0.002
CYP17 0.98 0.19 -0.06 0.95
COMT 1.10 0.22 0.48 0.63
Menarche 0.95 0.08 -0.56 0.57
Menopause 1.07 0.03 2.18 0.029

Table 2 Relative Risks of the final model

Variable RR  Std. Error Z p-value
Full term preg. 1.42 0.12 3.09 0.003
Menopause 1.04 0.03 2.14 0.028

Practical interpretation of the coefficients of thsatistically significant
variables provides evidence that when the age abpsise increases by one
year, the probability of breast cancer increased%y Moreover women with
full-term pregnancy have a 42% lower probabilitycohtracting breast cancer
than other women. It is useful to notice that, fréme interpretation of the
coefficient of the variable age of menarche in thé model, it can be
considered that when the age of menarche incrégsase year, the probability
of Ca decreases by 5%. Therefore there is eviddratefor the data set under
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consideration, when the age of menarche incredsesetative risk for Ca is
increased.

Table 3. Analyzing COMT restricted to menopause at over 48&'s

COMT Cases Controls Total

G/G 39 20 59
G/A 41 46 87
AIA 19 12 31
Total 99 78 177

For Table 3 we performed a’ Xest, relevant P-value = 0.062, which provides
practical evidence that the genotype COMT is relébebreast cancer (0.05 < P
< 0.1). Finally when the age of menarche is lowant12.5 years, both CYP17
and COMT are not related to cancer. The contributd the time for which
a woman is menstruating, with a Logit model, predda parameter vector
(-0.9925, -0.1542) for the (time, constant) withrgtard error 0.48, 0.27, and
RRtime =0.3707. The contribution of the time a warfgst menstruates
(sample average age about 13.5 years old) wass#tlstied with RRstart =
4.0615, when the coefficients were (-1.4016, -.J8&Hd corresponding
standard errors 0.42 and 0.24 respectively. Taldbots the contribution of
both variables to the model formed by them.

Table 4. Multivariate Logit Model Analysis

Variables Coefficientb se(b) Sigat RR

Start -1.2543 0.4462 0.0049 3.5052
Time -0.7829 0.4293 0.0688 0.3571
Constant -0.4061 0.3487 0.2442

When the square logit model was adopted and arhlyke various
variables, the parameter vector for (const, memarckmenarché)=
(-3.782, .576, -.023) with the vector of RRs =B02077, 1.779). The square
term was not statistically significant, and thigyides evidence that the linear
logit was well assumed.
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4. Discussion

In principle, Risk Assessment is viewed as an dogliprocess to determine
the probability that an adverse health effect llassociated with exposure to
a chemical. In this paper we were investigating aahemical, but the main
characteristics for females considering the frequenf certain genotypes
correlated with the level of estrogens in bloodwadl as the duration of the
exposure (menarche-menopause). Although nowadagysdsy to do with the
existing software, which is becoming cheaper arehpbr, this is still a rather
complicated task, which can be carried out withvem model among various
rival models. The odds ratio models provide a $mfutin evaluating the
Relative Risk, and the discussed (affine group tafpsformation might be
helpful in designing and then performing an expenin

When a chemical is present, the object is to edérnthe relative risk as a
function of the dose (genotype) of the chemicat tieaches the target organ
(breast). In this paper the risk for breast caneas evaluated as a function of
full-term pregnancies and menopause.
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