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SUMMARY  

The aim of this paper is to discuss cases involving the Relative Risk for Breast Cancer. 
The Relative Risk is examined in either in vitro or in vivo studies. This research is based 
on a sample for women in Greece, among whom a number of variables were studied. 
It was found that full-term pregnancy and the menopause are statistically significant 
factors influencing the Relative Risk for breast cancer. A critical discussion and 
extension of the existing theoretical background are also provided. 
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1. Introduction 

In principle, Risk Assessment is defined as the likelihood of adverse/unwanted 

responses to exposure to a restrictive agent. It is crucial to know the Cancer 

Bioassays ((Zapponni, 2002; Kitsos, 2005a), in order to analyze the collected 

data, as well as possible. Moreover when an optimal design approach is 

adopting the Relative Risk is reduced. The application of statistical analysis to 

medical problems goes back to Mantel and Haenszel (1959), while for an 

extended list of 1100 references concerning Cancer Risk Assessment, see Edler 

and Kitsos (2005). The “best” estimation leads to an optimal design (Kitsos, 

2005b), with D-optimality being the most applicable to biological studies 

(Kitsos,1999). The particular statistical analysis needed for Biologically Based 

Models has been extensively discussed by Wosniok et. al. (1998). Research on 

Relative Risk for Cancer is based on:  
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(i) Previewing of the probability of a person’s developing cancer, or  

(ii) To assess the probability of cure, for patients.  

In the case of prediction, there are two different lines of approach: 

1. To identify the parameters affecting the probability of malignancy.  

2. To estimate the likelihood of cancer appearing in the first place.  

The former is realised through biochemical, genetic and clinical studies. The 

latter is considered through a statistical methodology applied to real 

populations.  

Every parameter promoting tumorigenesis increases the risk associated with 

cancer’s appearance or the probability of an unwanted development (poor 

prognosis) when cancer is present (Ratto et al., 1998). These factors can be 

environmental, such as radiation and chemicals, or endogenous, mainly 

associated with the genetic profile of the patient.  

In other cases a gene may affect a pathway or a cycle that in turn affects or 

regulates other biochemical aspects which can alter the hormonal profile of the 

subject. Whether the presence of that compound is the cause or the result of the 

malignancy is irrelevant. What matters is to use these molecules or their 

biochemical results as tools for prediction and assessment, or – more practically 

– for medical diagnosis. Many malignancies are still diagnosed when the 

metastatic process has already started, indicating a poor prognosis.  

It has been pointed out that tumour markers (usually proteins associated 

with a malignancy) might be clinically usable in patients with cancer (Cheung 

2000, Amaral-Mendes and Pluygers 1999). A tumour marker can be detected in 

a solid tumour, in circulating tumour cells in peripheral blood, in lymph nodes, 

in bone marrow or in other body fluids. A tumour marker may be used to define 

a particular disease entity, in which case it may be used for diagnosis, staging, 

or population screening.  

Markers may also be used to detect the presence of occult metastatic 

disease, to monitor response to treatment, or to detect recurrent disease. Some of 

the markers related to breast cancer are widely monitored and the relevant tests 
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are routinely performed on patient samples, with the following being the most 

popular: 

1. Estrogen Receptors (ER): Estrogen, one of the female sex hormones, often 

regulates the growth of breast cancer, and can therefore be useful for prognosis.  

2. Progesterone Receptors (PR): Helps prediction of the response to hormonal 

therapy.  

3. HER-2: This is a protein and/or gene amplification, both of which contribute 

to aggressive growth of cancer, while HER-2 overexpression occurs in 

approximately 25 percent of women with breast cancer.  

4. p53: This is a tumour suppressor gene. Normally the p53 protein, coded for 

by the p53 gene, stops cells with DNA damage from multiplying until the DNA 

is repaired naturally or sends the defective cell into programmed cell death. 

When the p53 gene becomes damaged or mutated, the protein becomes non-

functional and loses its checkpoint control, allowing cancerous cells to replicate 

more readily.  

5. S phase: When a cell has duplicated its genetic material and divided through 

the process of mitosis, it may become inactive or it can start another replicate 

cycle, beginning with the "S" or synthesis phase during which genetic material 

duplicates again. A higher than normal proportion of S phase is a measure of 

how actively a tumour is proliferating.  

The most important risk factor associated with breast cancer is exposure to 

endogenous and exogenous oestrogen throughout the patient’s life. Many gene 

polymorphisms in the metabolism of breast cancer have been described as 

possible neoplasm etiological factors (Bugano et al.. 2008). In such cases, an 

accurate estimate of a woman's breast cancer risk is essential for optimal patient 

counselling and management.  

Estrogens, as activators of cellular proliferation, have been related to breast 

cancer progression. In this paper, we examine this problem in a case-control 

study: the frequencies of genotype polymorphisms were determined for genes 

involved in catechol estrogen formation, via estrogen biosynthesis (CYP17) 

and/or inactivation (COMT) (Huang et. al. 1999), and their association with an 

elevated risk for breast cancer was studied in Greek women. 
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Regarding breast cancer risk assessment, susceptibility, and its relation to 

CYP17, MspA1 polymorphism, different opinions have been expressed 

(Feigelson et al., 2002). Moreover Huang et al. (1999) found a positive 

association between the breast cancer relative risk and the individual 

susceptibility genotypes. The association of the relative risk with the number of 

susceptibility genotypes was stronger in women with prolonged exposure, 

women with higher estrogen levels – implied by early menarche – and women 

with higher body mass index (Kobayashi and Kawakub, 1994). The collected 

data set for the breast cancer measures: full term pregnancies, menarche, 

menopause, COMT, CYP17, among other variables, see section 3. 

In this paper, the logit model is adopted to estimate the relative risk. 

Therefore the second section is devoted to a compact consideration of the 

logistic regression.  

2. The Logit Model and the Relative Risk 

Consider a subject with attributes given by the input vector X=(X1, X2,…, Xp )
T. 

Then, risk analysis concentrates interest on the parameter p(x), i.e. the 

probability that this subject has a certain characteristic C, given that the input 

vector takes the real vector value x, i.e. X=x, and measures the odds ratio or the 

Relative Risk RR=p(x)/(1-p(x)). The logit model has been suggested since the 

pioneering paper of Berkson (1955). That is, the log odds have been assumed 

linear i.e.  

log{p(x)/(1-p(x)} = xT
β                                                                      (2.1) 

with β being an appropriate vector of regression parameters, and 

xT
β = β0+β1x1 +….+βpxp, (Hosmer and Lemeshow, 1989). Then, from (2.1), 

considering the cumulative distribution function of the logistic distribution 

function, say Logit(z) = ez/(1+ez), Rao and Toutenburg (1999), we can evaluate 

that p(x) = Logit-1(xT
β), see also Kitsos (2006).  
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A very similar approach was adopted by Bliss (1935) in his pioneering 

paper on Risk Analysis, where he considered the cumulative distribution 

function of the standard normal distribution φ(t), say  

Normal(z) = ∫ϕ
∞−

z
dt)t( , and let p(x) = Normal-1(xT

β).  

This method is known as probit analysis, and it has been pointed out that, 

for values of p = p(x) within [0.2, 0.8], both methods are very close. Various 

extensions have been discussed (Aranda-Ordaz, 1981, Taylor, 1988, among 

others). In principle a general binary regression model is considered as 

F1(p(x)) = xT
β equivalent to p(x) = F(xT

β), for a given continuous cumulative 

distribution function F. 

If we assume that with the covariate xi, i = 1,2,…,p are associated ni 

persons, then the MLE of β, say b, provides linear predictors x, through the 

estimated probabilities πi, i = 1,2,…,p. Then we can evaluate the estimated 

expected information matrix I(ξ,b) which, for the design matrix D=(xij) 

i = 1,2…,p, j = 1,2,…,n, is equal to I(ξ,b) = DTWD, with W = diag (wii), 

wii = niπi(1-πi), i = 1,2,…,p with ξ being a design measure; see McCullagh and 

Nedler (1989) for details. Thanks to Fisher’s information the variances can be 

estimated, and thanks to the Rao-Blackwell theorem, bounds for the variances 

are considered, and approximated confidence intervals can be obtained. 

For the log-likelihood ratio statistic log L , the deviance, say Dev, is defined 

as 2logDev L= , and it can be proved that Dev ∼ 2
pn−χ . Therefore the 

expected value of Dev has to be close to n-p, when a good fit of the data by the 

model occurs (Breslow and Day, 1980).  

Alternatively to the MLE, Firth (1993) introduced a modification of the 

score function so as to reduce the small sample bias of MLE. He imposed the 

so-called “penalty” term on the typical likelihood function; the “penalized 

likelihood function” is defined as  

1/2 ; x) |I(ξ, )|β β∗ =L L(                                                                   (2.2) 
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where β is the parameters involved, x is the data, ξ is the design measure. The 

log-likelihood of (2.2) is equal to  

1
 ln|I(ξ, )|

2
l l β∗ = +                                                                           (2.3) 

and the modified score function U is reduced to  

{ }-11
U U  tr I(ξ, )

2
Tβ∗ = +  with { } ij

ij
j

I(ξ, )
=

θ
T T

β ∂ =  ∂  

             (2.4) 

Now, the regression coefficients β of the proposed logistic model (2.1) 

quantify the relationship of the independent variables to the dependent variable, 

involving the parameter as the Relative Risk (RR) defined already. A typical χ2 

test is applied for the null hypothesis H0: RR=1 vs. H1: RR≠1 is identical to a 

test of the equality of the two proportions’ having or not having the 

characteristic C, i.e. H0: P0 =P1 vs. H1: P0≠P1.  

We mention that RR= 1 1
ˆexp( ) exp( )β β≅ can be biased due to population 

heterogeneity caused by confounding factors associated with the response, for 

the simple logit model and not only for that model. Recall (2.1). To decide for 

a quadratic term in (2.1), namely logit[P(Y=1)] = m0 + m1x + m2x
2, is quite 

different. If the term m2 is essentially different from zero, the question is how 

“robust” is the linear model. We shall apply this consideration and we shall not 

restrict ourselves to linear model approximation, as occurs in all applications. 

Moreover it has been extensively discussed by Fornius (2008) that when g(π), 

the link function, is of the form 

2
0 1g(π) β β (x µ)= + − .                                                                      (2.5) 

for the parameter vector ,0 1θ (β ,β µ)= a 3-point D-optimal design is: 

3

x      0        x

1/3    1/3     1/3
ξ

− 
=  
 

, with x = 1.957 or 1.238,  

while a 4-point D-optimal design can be also obtained; Fornius (2008). 
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For the Logit model and link function defined by the logit transformation, 

the D-optimal design allocates half observations (i.e. ξ = 1/2) at the optimal 

design points ±1.5434, when the vector of coefficients is (0, 1). For the optimal 

design approaches in Ca Bioassays, see Kitsos (2002, 2005a, b). The sequential 

designs for the logit model have been also discussed by Fornius (2008, Chapter 

5). The stochastic approximation plays an important role in the development of 

a sequential design, usually related to D-optimality (Kitsos, 1999) in 

applications. Fornius (2008a) creates a sequential c-optimal design and 

compares it with the D-optimal designs for the logit model. Different c-optimal 

designs can be produced with different β = 0 1(β ,β ) and "direction ray" c. For 

β = (1, 1), c = (1,3) and the explanatory variable within [-3,3] the c-optimal 

design is a two point design at -3 and 1.4164, with the corresponding weights 

equal to 0.1826 and 0.8174 respectively. It was pointed out that the values of 

the input vector (0, 1) are essential to construct an optimal design, therefore for 

the Logit model, the "canonical form" is introduced. This is based on the fact 

that c-optimality remains invariant when the data undergoes a “linear” 

transformation . Now we state and prove the following Theorem 1.  

Theorem 1. The set of the transformations  

  ℑ








∈







== R10

10
, ,

01
ββ

ββ
G                                                 (2.6) 

forms an affine transformation group, under matrix multiplication, which 

preserves the c-optimal information measure.  

Proof: Considering another element of the group ℑ  as  

0 1
0 1

1 0
, ,H a a

a a

 
= ∈ 
 

� then it can be proved easily that 

  0 1
0 1

1 0
, ,HG γ γ

γ γ
 

= ∈ ℑ ∈ 
 

� , with 0 0 1 0 1 1 1,a aγ α β γ β= + ∈ = ∈� � .  

Similarly if K∈ ℑ  then it can be proved that (HG) K = H (GK)∈ ℑ . The unit 
transformation I∈ ℑ  is the identity matrix, the inverse transformation G-1∈ ℑ  
is the inverse matrix of G, and GI = IG = G∈ ℑ . We introduce the 

RR

R

R
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transformation of the design space U to W of the form: w = G u∈W with G 
from the group ℑ . Take c-optimality as the optimal design criterion function Φ, 

then Φ( uM ) = 1t
uc M c− , with uu MM =  (β,ξ ) the average per observation 

information matrix in U space, and Mw in W space. Then it is easy to see that 
1T

uc M c− = 1T
w w wc M c−  with ,w uc Gc G= ∈ ℑ .                                                     �  

This theoretical result practically means that we can work as follows: 

perform the experiment with the "easiest" scale and position parameters. To 

perform the experiment at the optimal design points as in c-optimality, prior 

knowledge of 0 1β ,β  is needed. Then transform the results with an element from 

the group of affine transformations, and we still have an optimal design. With 

the group of affine transformations the experimenter can move to a different 

"orbit", adopting the GcT "direction ray", when he has evaluated only one set of 

experiments. The discussion was based on the fact that the evaluation of 

Relative Risk is mainly based on the logit model, and this discussion is applied 

in section 3 below. 

Now let us consider the general case, where the dichotomous response 

variable Y denotes whether (Y=1) or not (Y=0) the characteristic under 

investigation is linked with the k regression variables X=(X1, X2, …., Xk) via 

the logit equation: 

0
1

0
1

exp

( 1)

1 exp

K

k k
k

K

k k
k

X

P Y

X

β β

β β

=

=

 + 
 = =
 + + 
 

∑

∑
                                                (2.7) 

This is equivalent to Logit Pr(Y=1X)= 0
1

K

k k
k

Xβ β
=

+∑    

With this formulation we have the benefit that the relative risk (RR) for 

individuals having two different sets X′ and X of risk variables is  

[ ]
1

( ) 1 ( )
exp ( )

( )[1 ( )]

K

i i i
i

P X P X
RR X X

P X P X
β

=

′ −  ′= = − ′−  
∑                            (2.8) 
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It is essential that the RR of the k regressors (RRk) influences the RR of the k+1 

regressors, RRk+1 as in relation (12) below, due to the following: 

Theorem 2. Let the relative risk, as above in (2.8), be 

1

K

K i i
i

RR β δ
=

=∑ , i i iX Xδ ′= − . Then if a variable is added, the relative risk of 

the k+1 variables equals the k-variable relative risk times the new variable’s 

relative risk, i.e. 

 RRk+1 = RRk rk+1                                                                                                                       (2.9) 

This theoretical result informs the experimenter that the k input variables 

continue to participate with a “total” relative risk RRk either in a k-variable 

model or in a (k+1)-variable model. 

Proof: Indeed:  

1

1
1

exp
K

K i i
i

RR β δ
+

+
=

 = = 
 
∑ 1 1

1

exp
K

i i K K
i

β δ β δ+ +
=

 + = 
 
∑

{ }1 1 1
1

exp exp
K

i i K K K K
i

RR rβ δ β δ+ + +
=

  = ⋅ 
 
∑ , 

where the definition of rK+1 is obvious. So the relative risk of the incoming 

variable is  

1
1

K
K

K

RR
r

RR
+

+ = , q.e.d.                                                                                �  

3. Analyzing collected breast cancer data sets 

The study concerns 98 breast cancer patients and 125 healthy controls, 

compared considering the age at menarche, age at menopause, number of full-

term pregnancies and the CYP17, COMT genotypes. The frequency of the 

CYP17 A1/A1 genotype was compared to A1/A2 and A2/A2, while the 

frequency of the COMT G/G genotype was compared to G/A and A/A.  

The logit model was used in order to compare the patients with the controls. 

The final model was chosen with a stepwise regression. In all cases the best 
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model is chosen with log-likelihood, and the goodness of fit is examined 

(Lemeshow and Hosmer,1982). In Table 1 the Relative Risks of the full model 

are given. Using stepwise regression the final model was estimated (Table 2), 

with two input variables, statistically significant (at a significance level of 0.05), 

namely full-term pregnancy and menopause. 

The 2X  test was used in order to examine whether each of the genotypes 

CYP17 and COMT are related to Cancer Risk. Only COMT seems to be related 

to cancer at a significance level of 0.10 (value of P = 0.096). Moreover the two 

genotypes are related to Ca when the age of menarche is lower than the average 

value of 12.5 years and the age of menopause is over 48.8 years, while CYP17 

is not (Kitsos et al., 2007). 

 

Table 1. Relative Risks of the full model 

Variable RR Std. Error Z p-value 
Full term preg. 1.45 0.17 3.09 0.002 
CYP17 0.98 0.19 -0.06 0.95 
COMT 1.10 0.22 0.48 0.63 
Menarche 0.95 0.08 -0.56 0.57 
Menopause 1.07 0.03 2.18 0.029 

 

Table 2 Relative Risks of the final model 

Variable RR Std. Error Z p-value 
Full term preg. 1.42 0.12 3.09 0.003 
Menopause 1.04 0.03 2.14 0.028 

 

Practical interpretation of the coefficients of the statistically significant 

variables provides evidence that when the age at menopause increases by one 

year, the probability of breast cancer increases by 4%. Moreover women with 

full-term pregnancy have a 42% lower probability of contracting breast cancer 

than other women. It is useful to notice that, from the interpretation of the 

coefficient of the variable age of menarche in the full model, it can be 

considered that when the age of menarche increases by one year, the probability 

of Ca decreases by 5%. Therefore there is evidence that for the data set under 
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consideration, when the age of menarche increases the relative risk for Ca is 

increased. 

 

Table 3. Analyzing COMT restricted to menopause at over 48.8 years 

COMT Cases Controls Total 
G/G 39 20 59 
G/A 41 46 87 
A/A 19 12 31 
Total 99 78 177 

 

For Table 3 we performed a X2 test, relevant P-value = 0.062, which provides 

practical evidence that the genotype COMT is related to breast cancer (0.05 < P 

< 0.1). Finally when the age of menarche is lower than 12.5 years, both CYP17 

and COMT are not related to cancer. The contribution of the time for which 

a woman is menstruating, with a Logit model, provided a parameter vector 

(-0.9925, -0.1542) for the (time, constant) with standard error 0.48, 0.27, and 

RRtime =0.3707. The contribution of the time a woman first menstruates 

(sample average age about 13.5 years old) was also studied with RRstart = 

4.0615, when the coefficients were (-1.4016, -.7885) and corresponding 

standard errors 0.42 and 0.24 respectively. Table 4 shows the contribution of 

both variables to the model formed by them. 

 

Table 4. Multivariate Logit Model Analysis 

Variables Coefficient b se(b) Sig at RR 
Start  -1.2543 0.4462 0.0049 3.5052 
Time  -0.7829 0.4293 0.0688 0.3571 
Constant  -0.4061 0.3487 0.2442  

 

When the square logit model was adopted and analysed, for various 

variables, the parameter vector for (const, menarche, (menarche)2) = 

 (-3.782, .576, -.023) with the vector of RRs =(.023, .977, 1.779). The square 

term was not statistically significant, and this provides evidence that the linear 

logit was well assumed. 
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4. Discussion 

In principle, Risk Assessment is viewed as an empirical process to determine 

the probability that an adverse health effect will be associated with exposure to 

a chemical. In this paper we were investigating not a chemical, but the main 

characteristics for females considering the frequency of certain genotypes 

correlated with the level of estrogens in blood as well as the duration of the 

exposure (menarche-menopause). Although nowadays it is easy to do with the 

existing software, which is becoming cheaper and cheaper, this is still a rather 

complicated task, which can be carried out with a given model among various 

rival models. The odds ratio models provide a solution in evaluating the 

Relative Risk, and the discussed (affine group of) transformation might be 

helpful in designing and then performing an experiment. 

 When a chemical is present, the object is to estimate the relative risk as a 

function of the dose (genotype) of the chemical that reaches the target organ 

(breast). In this paper the risk for breast cancer was evaluated as a function of 

full-term pregnancies and menopause.  

 

Acknowledgements 

I would like to thank the CCMS/NATO pilot study for the generous grant, 

under Dr Giovanni Zapponi’s supervision (who continuously encouraged me) 

concerning experimental carcinogenesis, as well as all the members of the 

research group who made corrections to my attempts. The comments of the 

referee are very much appreciated. 

 

REFERENCES 

Amaral-Mendes J.J., Pluygers E. (1999): Use of Biochemical and Moleular Biomarkers 
for Cancer Risk Assessment in Humans. In: Respectives on Biologically Based 
Cancer Risk Assessment, by Cogliano V., Luebeck G., Zapponi G., NATO-
Challenges of Modern Society, 23: 81–152. 

Aranda-Ordaz R.D. (1981): On two families of transformations to additivity for binary 
response data. Biometrika 68: 357–364. 



 
 
 
 

Estimating the Relative Risk for Breast Cancer 

 

 

 

145 

Berkson, J. (1955): Maximum Likelihood and Minimum X2 estimates of the logistic 
function. Journal of American Stat. Association 50: 130–162. 

Bliss C.I. (1935): The calculation of the dosage mortality curve. Annals of Applied 
Biology 22: 134. 

Breslow N.E., Day N.E. (1980): Statistical methods in Cancer Research vol. 1: The 
analysis of case controls studies. Lyon: IARC. 

Bugano D.D., Conforti-Froes N., Yamaguchi N.H., Baracat E.C. (2008): Genetic 
polymorphisms, the metabolism of estrogens and breast cancer: a review. European 
Journal Gynaecol Oncology 29 (4): 313–20. 

Cheung K., Graves C.R.L., Robertson J.F.R. (2000): Tumour marker measurements in 
the diagnosis and monitoring of breast cancer. Cancer Treat Review 26: 91–102. 

Edler L., Kitsos C.P. (2005): Recent Advances in Qualitative Methods in Cancer and 
Human Health Risk Assessment. Editors, Wiley, UK. 

Firth D. (1993): Bias Reduction of Maximum Likelihood Estimates. Biometrika 20: 
272–319. 

Feigelson S.H., McKean-Cowdlin R., Henderson E.B. (2002): Concerning the CYP17 
MspA1 polymorphism and breast cancer risk: a meta-analysis. Mutagenesis 17: 
445–446. 

Fornius E.F. (2008): Optimal Design of Experiments for the Quadratic Logistic Model. 
PhD thesis, Stockholm University, Sweden. 

Fornius E.F. (2008a): Sequential designs for Binary Data with the Response to 
Maximize the Probability of Response. Communications in Statistics – Simulation 
and Computation 37: 6. 

Gancberg D., Lespagnard L., Rouas G., Paesmans M., Piccart M., Di Leo A., Nogaret 
J.M., Hertens D., Verhest A., Larsimont D. (2000): Sensitivity of HER-2/neu 
antibodies in archival tissue samples of invasive breast carcinomas: correlation with 
oncogene amplification in 160 cases. American Journal of Clinical Pathology 113: 
675–682. 

Hosmer D.W., Lemeshow S. (1989): Applied Logistic Regression. John Wiley. 
Huang C-S., Chern H-D., Chang K-J., Cheng C-W., Hsu S-M., Shen C-Y. (1999): 

Breast Cancer Risk Associated with Genotype Polymorphism of the Estrogen - 
metabolizing CYP17, CYP1A1 and COMT: A Multigenic Study on Cancer 
Susceptibility. Cancer Research 59: 4870–4875. 

Kitsos C.P. (1999): Optimal Designs for Estimating the Percentiles of the Risk in 
Multistage Models in Carcinogenesis. Biometrical Journal 41(1): 33–43. 

Kitsos C.P. (2002): The Ca Risk Assessment as an Optimal Experimental Design. In: 
Endocrine Disrupters and Carcinogenic Risk Assessment, by L. Chyczewski et. al. 
(Eds): 329–337.  

Kitsos C.P. (2005a): The Ca Risk Assessment as a Bioassay. In: 55th Session of the 
International Statistical Institute, 5–12 April 2005, Sydney. 

Κitsos C.P. (2005b): Optimal Design for Bioassays in Carcinogenesis. In: Quantitative 
Methods for Cancer and Human Health Risk Assessment, by Lutz Edler and 
Christos Kitsos (Eds), Wiley, England: 267–279.  

Kitsos C.P. (2006): On the Logit Methods for Ca Problems. In: Statistical Methods for 
Biomedical and Technical Systems, Limassol, Cyprus: 335–340. 

Kitsos C.P., Chalikias M.S., Voutsinas G.P. (2007): A quantitative approach to Brest 
Cancer Data. In: 2d International Conference on Cancer Risk Assessment 
(ICCRA2), Santorini, 25–27 May 2007, e- proceedings. 



 
 
 
 

C. P. Kitsos 

 
 
 
 
146 

Kobayashi T., Kawakub T. (1994): Prospective investigation of tumour markers and 
risk assessment in early cancer screening. Cancer 73(7): 1946–1953. 

Lemeshow S., Hosmer D.W. (1982): The use of goodness-of fit statistics in the 
development of logistic regression models. American Journal of Epidemiology, 
115: 92–106. 

Mantel N., Haenszel W. (1959): Statistical aspects of the analysis of data from 
retrospective studies of disease. J. of the National Cancer Institute 22: 719–748. 

Marty M., Cognetti F., Maraninchi D. (2005): Efficacy and safety of trastuzumab 
combined with docetaxel in patients with HER2-positive metastatic breast cancer 
given as first-line treatment: results of a randomized phase II trial. Journal of 
Clinical Oncology 23: 4265–4274. 

McCullagh P., Nedler J.A. (1984): Generalized Linear Models. 2nd ed. Chapman and 
Hall, London. 

Mitrunen K., Hirvonen A. (2003): Molecular Epidemiology of sporadic breast cancer. 
The role of polymorphic genes involved in estrogens biosynthesis and metabolism. 
Mutation Research 544: 9–41. 

Nicolini A., Carpi A. (2000): Postoperative follow-up of breast cancer patients: 
overview of progress in the use of tumour markers. Tumour Biology 21: 235–48. 

Rao C.R., Toutenburg H. (1999): Linear Models. 2nd ed. Springer-Verlag, New York. 
Ratto C., Sofo L., Ippoliti M., Merico M., Doglietto G.B., Crucitti F. (1998): Prognostic 

factors in colorectal cancer. Literature review for clinical application. Dis. Colon. 
Rectum 41: 1033–1049. 

Ridolfi R.L., Jamehdor M.R., Arber J.M. (2000): HER-2/ neu testing in breast 
carcinoma: a combined immunohistochemical and fluorescence in situ approach. 
Mod. Pathology 13: 866–873. 

Risch A., Dally H., Edler L. (2005): Genetic Polymorphisms in Metabolising Enzymes 
as Lung Cancer Risk Factors. In: Recent Advances in Quantitative Methods in 
Cancer and Human Risk Assessment, by L. Edler and C. Kitsos (Eds). Wiley, UK. 

Ross J.S., Fleisher J.A. (1999): HER-2/neu (c-erb-B2) gene and protein in breast cancer. 
American Journal of Clinical Pathology 112 (Suppl 1): 53–67. 

Schwab M. (1998): Amplification of oncogenes in human cancer cells. Bioassays 20: 
473–479. 

Taylor J.M.G. (1988): The cost of generalizing logistic regression. Journal of American 
Statistical Association 83: 1078–1083. 

Wosniok W., Kitsos C., Watanabe K. (1998): Statistical issues in the Application of 
Multistage and Biologically Based Models. In: Respectives on Biologically Based 
Cancer Risk Assessment, by Cogliano V., Luebeck G., Zapponi G. NATO-
Challenges of Modern Society, Vol. 23: 243–272. 

Zapponni G.A. (2002): Carcinogenetic Risk Assessment: Some Points of Interest for a 
Discussion. In: Endocrine Disrupters and Carcinogenic Risk Assessment, by 
Chyczewski L., Niklinski J., Plugers E. (Eds). IOS press: 15–27. 

 


